Design Patterns for Resource-Constrained Automated Deep-Learning Methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Methods for Deep Learning

We introduce a new family of positive-definite kernel functions that mimic the computation in large, multilayer neural nets. These kernel functions can be used in shallow architectures, such as support vector machines (SVMs), or in deep kernel-based architectures that we call multilayer kernel machines (MKMs). We evaluate SVMs and MKMs with these kernel functions on problems designed to illustr...

متن کامل

Two-Bit Networks for Deep Learning on Resource-Constrained Embedded Devices

With the rapid proliferation of Internet of Things and intelligent edge devices, there is an increasing need for implementing machine learning algorithms, including deep learning, on resource-constrained mobile embedded devices with limited memory and computation power. Typical large Convolutional Neural Networks (CNNs) need large amounts of memory and computational power, and cannot be deploye...

متن کامل

Automated Image Captioning for Rapid Prototyping and Resource Constrained Environments

Significant performance gains in deep learning coupled with the exponential growth of image and video data on the Internet have resulted in the recent emergence of automated image captioning systems. Ensuring scalability of automated image captioning systems with respect to the ever increasing volume of image and video data is a significant challenge. This paper provides a valuable insight in t...

متن کامل

Deep Automated Multi-task Learning

Multi-task learning (MTL) has recently contributed to learning better representations in service of various NLP tasks. MTL aims at improving the performance of a primary task, by jointly training on a secondary task. This paper introduces automated tasks, which exploit the sequential nature of the input data, as secondary tasks in an MTL model. We explore next word prediction, next character pr...

متن کامل

Deep Automated Multit-task Learning

Multi-task learning (MTL) has recently contributed to learning better representations in service of various NLP tasks. MTL aims at improving the performance of a primary task, by jointly training on a secondary task. This paper introduces automated tasks, which exploit the sequential nature of the input data, as secondary tasks in an MTL model. We explore next word prediction, next character pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AI

سال: 2020

ISSN: 2673-2688

DOI: 10.3390/ai1040031